Computing protein stabilities from their chain lengths.
نویسندگان
چکیده
New amino acid sequences of proteins are being learned at a rapid rate, thanks to modern genomics. The native structures and functions of those proteins can often be inferred using bioinformatics methods. We show here that it is also possible to infer the stabilities and thermal folding properties of proteins, given only simple genomics information: the chain length and the numbers of charged side chains. In particular, our model predicts DeltaH(T), DeltaS(T), DeltaC(p), and DeltaF(T)--the folding enthalpy, entropy, heat capacity, and free energy--as functions of temperature T; the denaturant m values in guanidine and urea; the pH-temperature-salt phase diagrams, and the energy of confinement F(s) of the protein inside a cavity of radius s. All combinations of these phase equilibria can also then be computed from that information. As one illustration, we compute the pH and salt conditions that would denature a protein inside a small confined cavity. Because the model is analytical, it is computationally efficient enough that it could be used to automatically annotate whole proteomes with protein stability information.
منابع مشابه
Amphiphilic Block Copolymer Nano-micelles: Effect of Length Ratio of the Hydrophilic Block
Block copolymer nano-micelles are especially important in cancer treatment because of their fine dimensions. In this article, three systems of amphiphilic copolymers with similar lengths and different ratios of the hydrophobic and hydrophilic chains are studied using implicit-solvent coarse-grained molecular dynamics simulations. The factor fphil is defined as the ratio of the number...
متن کاملAlcohol's effects on lipid bilayer properties.
Alcohols are known modulators of lipid bilayer properties. Their biological effects have long been attributed to their bilayer-modifying effects, but alcohols can also alter protein function through direct protein interactions. This raises the question: Do alcohol's biological actions result predominantly from direct protein-alcohol interactions or from general changes in the membrane propertie...
متن کاملSpecificity versus stability in computational protein design.
Protein-protein interactions can be designed computationally by using positive strategies that maximize the stability of the desired structure and/or by negative strategies that seek to destabilize competing states. Here, we compare the efficacy of these methods in reengineering a protein homodimer into a heterodimer. The stability-design protein (positive design only) was experimentally more s...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملInvestigating Stability and Solubility Properties of Cyclophosphamide-Functionalized (8,0) and (4,4) CNT Complexes in Water: Computational Studies
Stabilities and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized (8,0) zigzag and (4,4) armchair carbon nanotubes (CNTs) complexes in water were studied using density functional theory (DFT) calculations. Two attachments namely the sidewall- and tip-attachments are considered for the model constructions. Calculations of the total electronic energy (Et) and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 106 26 شماره
صفحات -
تاریخ انتشار 2009